Author: Lanza, R.C.
Paper Title Page
TUP029 A 15-Mev/nucleon Iso-Cyclotron for Security and Radioisotope Production 223
  • C. Johnstone
    PAC, Batavia, Illinois, USA
  • R.B. Agustsson, S. Boucher, S.V. Kutsaev, A.Yu. Smirnov
    RadiaBeam, Santa Monica, California, USA
  • R.C. Lanza
    MIT, Cambridge, Massachusetts, USA
  Funding: Work supported by US Dept of Energy under a Small Business Innovation Research Grant
Cargo inspection systems exploit the broad bremsstrahlung spectrum from a 6-10 MeV, low-duty cycle electron accelerator which in the presence of significant backgrounds presents challenges in image and material identification. An alternative approach is to use ions which can excite nuclear states either directly, or through generation of secondary high-energy signature gammas produced from nuclear interactions in a target. RadiaBeam is designing a compact sector isocyclotron 1.25 m in radius, with high-gradient cavities to accelerate multi-ion species up to 15-20 MeV/u with large turn-to turn, centimeter-level separation for low-loss extraction without lossy foil stripping. A strong-focusing radial field profile will be optimized in a separated-sector format for control over machine tune simultaneous with isochronous orbist requirements for high-current (~0.5 milliamp) operation. Innovation in injection will be introduced to replace the high-loss central region. Non-security applications of the cyclotron include medical isotope production, ion radiobiology, as well as material science research and ion instrumentation development.
DOI • reference for this paper ※  
About • paper received ※ 19 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)